The Royal Swedish Academy of Sciences decided to award one half of the 2020 Nobel Prize in physics to Roger Penrose and the other half jointly to Reinhard Genzel and Andrea Ghez for furthering the understanding of black holes, the most “enigmatic” objects in the universe.
1. Roger Penrose
University of Oxford, UK
“for the discovery that black hole formation is a robust prediction of the general theory of relativity”
2. Reinhard Genzel
Max Planck Institute for Extraterrestrial Physics, Garching, Germany and University of California, Berkeley, USA
3. Andrea Ghez
University of California, Los Angeles, USA
“for the discovery of a supermassive compact object at the center of our galaxy”
What do the award winners’ work tell us about black holes?
Penrose has been awarded the prize for the discovery “that black hole formation is a robust prediction of the general theory of relativity,” while Genzel and Ghez have been awarded the prize for the discovery of a “supermassive compact object at the centre of our galaxy.”
Penrose’s work has shown that black holes are a direct consequence of Albert Einstein’s general theory of relativity. Einstein himself did not believe that black holes exist and presented his theory in November 1915, providing a new way to look at and understand gravity that shapes the universe “at the largest scale”. Gravity also shapes space and influences the passage of time. It is this gravity, which is so great inside a black hole that is able to bend space and slow down time.
Genzel and Ghez, on the other hand, have discovered that an invisible and an extremely heavy object governs the stars’ orbit at the centre of the Milky Way. This extremely heavy object has the mass equivalent to 4 million solar masses and is packed into an area about the size of our solar system.
Essentially, their work tells us that at the centre of our galaxy the Milky Way lies an invisible supermassive object, of which a black hole provides a reasonable explanation. Physicists have been suspecting the existence of a black hole at the centre of our galaxy for over 50 years now.
In order to see through to the middle of the Milky Way, Genzel and Ghez worked on developing methods and used some of the world’s largest telescopes.
By observing the orbits of the stars’ that are closest to the centre of the Milky Way, the physicists think that the black hole could most likely be hiding in Sagitarrius A*, a source of radio waves around which all stars in the Milky Way orbit. In other words, the existence of a black hole at the centre of our galaxy is what the physicists believe is what pulls a “jumble of stars,” causing them to “rush around at dizzying speeds”.
Official Sources :-https://www.nobelprize.org/prizes/physics/2020/press-release/
Comments
Post a Comment
If you have any doubt let me know in the comment section where i can try to solve it .
Thank you